Focke-Wulf Fw 190

Fw 190
Captured Fw 190 A in replicated Luftwaffe insignia. As a result the markings are enlarged and placed incorrectly
Role Fighter
Manufacturer Primarily Focke-Wulf Flugzeugbau AG, but also Ago, Arado, Fieseler, Mimetall, Norddeutsche Dornier and others
Designed by Kurt Tank
First flight 1 June 1939
Introduced August 1941
Retired 1945 (Luftwaffe); 1949 (Turkey)
Primary users Luftwaffe
Hungarian Air Force
Turkish Air Force
Romanian Air Force
Produced 1941–45; 1996: 16 reproductions
Number built Over 20,000
Variants Ta 152

The Focke-Wulf Fw 190 Würger was a German single-seat, single-radial engine fighter aircraft designed by Kurt Tank in the late 1930s. It was used by the Luftwaffe during the Second World War in a variety of roles. Like the Messerschmitt Bf 109, the Fw 190 was employed as a "workhorse", and proved suitable for a wide variety of roles, including air superiority fighter, strike fighter, ground-attack aircraft, escort fighter, and operated with less success as a night fighter.

When the Fw 190 started flying operationally over France in August 1941 it was quickly proven to be superior in all but turn radius to the Royal Air Force's main front-line fighter, the Spitfire Mk. V.[1] The 190 wrested air superiority away from the RAF until the introduction of the vastly improved Spitfire Mk. IX in July 1942 restored qualitative parity.[2] The Fw 190 made its air combat debut on the Eastern Front in November/December 1942. Soviet pilots regarded the Bf 109 as the greatest threat in combat on the Eastern Front; nevertheless, the Fw 190 made a significant impact. The fighter and its pilots proved just as capable as the Bf 109 in aerial combat, and in the opinion of German pilots that flew both German fighters, the Fw 190 presented increased firepower and manoeuvrability at low to medium altitude.

The Fw 190 became the backbone of Jagdwaffe (Fighter Force) along with the Bf 109. On the Eastern Front the Fw 190 was versatile enough to be used in Schlachtgeschwader (Destroyer Wings), specialised ground attack units which achieved much success against Soviet ground forces. As an interceptor, the Fw 190 underwent improvements to make it effective at high altitude allowing the 190 to maintain relative parity against its Allied opponents. The Fw 190A series' performance decreased at high altitudes (usually 6,000 m (20,000 ft) and above) which reduced its effectiveness as a high-altitude interceptor, but this problem was mostly rectified in later models, particularly in the Focke-Wulf Fw 190D series which was introduced in September 1944. In spite of its successes, it never entirely replaced the Bf 109.

The Fw 190 was well-liked by its pilots. Some of the Luftwaffe's most successful fighter aces flew the Fw 190, including Otto Kittel with 267 victories, Walter Nowotny with 258 victories and Erich Rudorffer with 222 claimed kills. A great many of their kills were claimed while flying the Fw 190.

Early development

Genesis

In autumn 1937, the Reichsluftfahrtministerium (RLM) ("Reich Air Ministry") asked various designers for a new fighter to fight alongside the Messerschmitt Bf 109, Germany's front-line fighter. Although the Bf 109 was an extremely competitive fighter, the RLM was worried that future foreign designs might outclass it and wanted to have new aircraft under development to meet these possible challenges.[3] Kurt Tank responded with a number of designs, most incorporating liquid-cooled inline engines. However, it was not until a design was presented using the air-cooled, 14-cylinder BMW 139 radial engine that the RLM's interest was aroused. It was believed that because the Fw 190 used a radial engine it would not affect production of the Bf 109, furthering the RLM's interest in the Fw 190.[4] At the time, the use of radial engines on land-based fighters was relatively rare in Europe, as it was believed that their large frontal area would cause too much drag on a design as small as a fighter. Tank was not convinced of this, having witnessed the success of radial engines as used by the US Navy, and felt a properly streamlined installation would eliminate this problem.[4]

Kurt Tank himself outlined the reasoning for his design:

The Messerschmitt 109 [sic] and the British Spitfire, the two fastest fighters in world at the time we began work on the Fw 190, could both be summed up as a very large engine on the front of the smallest possible airframe; in each case armament had been added almost as an afterthought. These designs, both of which admittedly proved successful, could be likened to racehorses: given the right amount of pampering and easy course, they could outrun anything. But the moment the going became tough they were liable to falter. During World War I, I served in the cavalry and in the infantry. I had seen the harsh conditions under which military equipment had to work in wartime. I felt sure that a quite different breed of fighter would also have a place in any future conflict: one that could operate from ill-prepared front-line airfields; one that could be flown and maintained by men who had had received only short training; and one that could absorb a reasonable amount of battle damage and still get back. This was the background thinking behind the Focke-Wulf 190; it was not to be a racehorse but a Dienstpferd, a cavalry horse.[5]

In response to the perceptions about radial-engine aircraft, Tank's solution was to tightly cowl the engine in its entirety. Normally, radial engines would be left open at the front, in order to allow in sufficient air to cool the engine. Instead, Tank's cowl completely enclosed the engine. Cooling air was admitted through a hole in the front of an oversized propeller spinner; a cone in the middle of the hole was intended to compress the air, allowing the small opening to create sufficient airflow. In theory, the tight-fitting cowling also provided some thrust due to the compression and heating of air at speed through the cowling.[6]

After the war, Tank denied a rumour that he had to "fight a battle" with the RLM to convince them of the radial engine's merits. In fact, the RLM favoured a radial engine fighter, as it meant it would not disrupt or divert production of the Bf 109's Daimler-Benz powerplant.[7]

First prototypes

Fw 190 V1 in its original form with the streamlined engine cowling and ducted spinner. The pointed tip of the internal spinner can also be seen. Pilot is probably Hans Sander.

The first prototype, the Fw 190 V1 (civil registration D-OPZE), powered by a 1,550 PS (1,529 hp, 1,140 kW) BMW 139 14-cylinder two-row radial engine, first flew on 1 June 1939. It soon showed exceptional qualities for such a comparatively small aircraft, with excellent handling, good visibility and speed (initially around 610 km/h (380 mph)).[8] The roll rate was 162° per second at 410 km/h (255 mph), but the aircraft had a high stall speed of 205 km/h (127 mph). The wings spanned 9.5 m (31 ft 2 in) and had an area of 15 m² (161.46 ft²).

A main feature of the Fw 190 was its wide landing gear. Tank appreciated that operating from primitive airfields in wartime would require stable undercarriage—a lesson learned from witnessing the difficulty of moving machinery in the First World War. The undercarriage was designed to withstand sinking speeds of 15 feet (4.5 metres) per second. This doubled the strength factor. The Fw 190 was thus more easily operated and suffered fewer accident rates which effected the Messerschmitt Bf 109, with its closely spaced landing gear. The undercarriage braking system was hydraulically activated.[9] The cockpit location, directly behind the engine, resulted in a cockpit that became uncomfortably hot. During the first flight, the temperature reached 55 °C (131 °F), after which Focke Wulf's chief test pilot, Hans Sander commented, "It was like sitting with both feet in the fireplace."[10] Flight tests soon showed that the expected benefits of Tank's cooling design did not eventuate, and, after the first few flights, this arrangement was replaced by a smaller, more conventional spinner which only covered the hub of the three-blade VDM propeller. In an attempt to increase airflow over the tightly-cowled engine, a 10-blade fan—geared to be driven at 3.12 times the engine speed, and later replaced with a nearly-identical twelve bladed fan—was introduced at the front opening of the redesigned cowling, and quickly became standard not only on the 190, but virtually all other German aircraft powered with the BMW 801 powerplant.[11] In this form the V1 first flew on 1 December 1939, having been repainted with the Luftwaffe's Balkenkreuz and with the Stammkennzeichen (factory code).[12] RM+CA.[13]

The Fw 190 V2 FL+OZ (later RM+CB) first flew on 31 October 1939 and was equipped from the outset with the new spinner and cooling fan. It was also was armed with one Rheinmetall-Borsig 7.92 mm (.312 in) MG 17 machine gun and one 13 mm (.51 in) MG 131 machine gun in each wingroot.[13]

Even before the first flight of the Fw 190 V1, BMW was bench testing a larger, more powerful 14-cylinder two-row radial engine designated the BMW 801. This engine introduced an engine management system called Kommandogerät: in effect, a mechanical computer which set mixture, propeller pitch (for the constant speed propeller), boost, and magneto timing. This reduced the pilots' work load to the throttle control only. The device was named the Kommandogerät, or "brain box". The drawback was slight and minor surges that made the Fw 190 harder to fly in close formations.[14] In the initial development phase, Tank asserted the device did not work well. One of the faults in the system was the violent switching in of the high-gear of the supercharger as the aircraft climbed. During a test flight Tank carried out a loop at medium altitude. Just as he was nearing the top of the loop, at 2,650 m (8,700 ft), the supercharger's high-gear kicked in with a jerk. The Fw 190 was on its back, with little airspeed. The sudden change in torque hurled the aircraft into a spin in which a pilot would quickly become disorientated. On this particular flight Tank's artificial horizon toppled (the cause is not explained). Although Tank did not know whether he was in an upright, or inverted spin he managed to recover after a loss of altitude. The rough transition was smoothed out and the device was made to work very well.[15]

The design team used rods to actuate the control surfaces, instead of the usual cables which tended to stretch. The resultant 'give' or 'play' of the stretched cables made the controls less crisp and responsive. Another innovation was to make the controls as light as possible. The maximum resistance for the aileron's controls had to be eight pounds, as the average man's wrist could not exert a greater force. Once the controls were correctly balanced, it was important that they stayed that way over a variety of speeds. A fighter pilot did not want to have to re-trim the aircraft in flight every time he changed the throttle settings. The design team were so successful in this regard that they found that movable trim tabs were not necessary. Small tabs were fitted to all control surfaces and adjusted on the ground after the initial test flights, to compensate for wide tolerances, typical in massed produced aircraft. The elevators were the only control surfaces which needed to be trimmed in flight; this was achieved using an all moving tail plane, which was electrically adjustable from a -3 to a +5 angle of incidence.[16] The empennage featured relatively small horizontal and vertical surfaces. The Rudder and elevators, like the ailerons, had ground-adjustable tabs only.[17]

Another aspect of the new design was the extensive use of electrically-powered equipment instead of the hydraulic systems used by most aircraft manufacturers of the time. On the first two prototypes the main undercarriage was hydraulic. Starting with the third prototype, the undercarriage was operated by push-buttons in the cockpit controlling electric motors in the wings, and was kept in position by electric up and down-locks.[18] The armament was also charged and fired electrically. Tank believed that service use would prove electrically-powered systems would be more reliable and more rugged than hydraulics; electric lines being much less prone to damage from enemy action.[17]

Later prototypes

Fw 190 V5k. This is the V5 with the original small wing. The 12 bladed cooling fan and redesigned undercarriage and canopy fairings can also be seen.

The RLM convinced Focke-Wulf and BMW to abandon the 139 engine in favour of the new engine. The 14 cylinder BMW 801 engine was similar in diameter to the 139, although it was heavier and longer by a considerable margin. This required Tank to redesign the Fw 190, as a result of which the V3 and V4 were abandoned and the V5 became the first prototype with the new engine, being fitted with the 1,560 PS (1,539 hp, 1,147 kW) BMW 801C-0. Much of the airframe was strengthened and the cockpit was moved back in the fuselage, which reduced the troubles with high temperatures and for the first time provided space for nose armament. A 12-blade cooling fan, installed in front of the engine's reduction gear housing, became standardised for BMW powered Fw 190s. The propeller shaft passed through the fan's central plate which was made of cast magnesium. The fan operated at three times the speed of the propeller to provide cooling air not only for the cylinders, but also for the annular oil cooler, which was located in the forward part of the cowling. The oil cooler was protected by an armoured ring which made up the front face of the cowling.[13] A small hole in the centre of the spinner also directed airflow to ancillery components.[19]

On the V5 the sliding canopy was redesigned by replacing the rear Plexiglas glazing with duralumin panels. The vertical tail shape was also changed and the rudder tab was replaced by a metal trim strip adjustable only on the ground. New, stiffer undercarriage struts were introduced, along with wheels of a bigger diameter. The retraction mechanism was changed from hydraulic to electrically powered and new fairings of a simplified design were fitted to the legs.[13] At first, the V5 used the same wings as the first two prototypes, but to make room for the bigger undercarriage, the wheel arches were enlarged by moving forward part of the leading edge of the wing root; the wing area became 15.0 m² (161.46 ft²). In this form this prototype was called the V5k for kleine Fläche (small wing).[20] The V5 first flew in the early spring of 1940.

However, the weight increase was substantial, 635 kg (1,400 lb), leading to higher wing loading and a deterioration in handling. As a result, following a collision with a ground vehicle in August 1940 that sent the V5 back to the factory for major repairs, it was rebuilt with a new wing which was less tapered in plan than the original design; it had a larger area, 18.30 m² (197 ft²), and now spanned 10.506 m (34 ft 5 in); the aircraft was now called the V5g for große Fläche (large wing). Although it was 10 km/h (6 mph) slower than when fitted with the small wing V5g was much more manouevrable and had a faster climb rate.[20] This new wing platform was to be used for all major production versions of the Fw 190.[13]

Even with the new engine and the cooling fan, the 801 suffered from very high rear row cylinder head temperatures, which in at least one case resulted in the detonation of the fuselage mounted MG 17 ammunition. One other shortcoming of the cockpit location was a poor over-the-nose view which led to handling problems on the ground. More than one ground crash resulted from the lack of familiarity with the new aircraft.

Fw 190 A-0 were the pre-production series ordered in November 1940. A total of 28 of these were built; because they were built before the new wing design was fully tested and approved, the first nine of the Fw 190 A-0 had small wings. All were armed with two synchronised 7.92 mm (.312 in) MG 17 machine guns mounted in the forward fuselage, one MG 17 in each wing-root, and one MG 17s in each of the outboard wings. In detail, they were different from later A-series Fw 190s: they had shorter spinners, the armoured cowling ring was a different shape, with a scalloped hinge on the upper, forward edge of the upper engine cowling, and the bulges covering the interior air-intakes on the engine cowlings were symmetrical "teardrops". Also, the panels aft of the exhaust pipes had no cooling slots. Several of these aircraft were later modified for testing engines and special equipment.[13]

Engine reliability

Engine problems plagued the 190 for much of its early development, and the entire project was threatened several times with a complete shutdown. If not for the input of Oberleutnants Karl Borris and Otto Behrens, both of whom had enlisted in the Luftwaffe as mechanics, the Fw 190 program might have died before reaching the front lines. Borris and Behrens could see past the limitations of the Fw 190 and the 801 and see a formidable fighter. During several RLM commissions that wished to terminate the program, both men indicated that the Fw 190's outstanding qualities outweighed its deficiencies.[21]

The first unit to be equipped with the A-0 was Eprobungsstaffel 190, formed in March 1941 to help iron out any technical problems and approve the new fighter before it would be accepted for full operational service in mainstream Luftwaffe Jagdgeschwader. At first this unit, commanded by Oblt. Behrens, was based at Rechlin, but it was soon moved to Le Bourget. Some 50 modifications were required before the RLM approved the Fw 190 for deployment to Luftwaffe units.[21]

Engine reliability problems, particularly overheating, continued to plague the Fw 190 until spring 1942, and the availability of the BMW 801 C-2 engine in the Fw 190 A-2. A second, most frequent problem was the lower cylinder of the second bank, which continually broke its connecting rod owing to overheating. In fact, the problem was relatively easy to solve by rerouting part of the exhaust system, a method discovered by III./JG 26's Technical Officer ("T.O.") Rolf Schrödeter. To quickly implement the fix, it was found the rerouting could be done easily in Gruppe workshops. The reduction in temperature affecting the bottom most cylinder went a long way to solving the problem.[22][23]

Fw 190 A

A-1 to A-3

Fw 190 A. The machine is being test flown by the USAAF. As a result the markings are enlarged and placed incorrectly

This version first rolled off the assembly lines in June 1941. The first few models were shipped to the Erprobungsstaffel (formerly from II./JG 26 Schlageter) for further testing. Following this testing the Fw 190 A-1s entered service with II./JG 26 stationed outside of Paris, France. The A-1 was equipped with the BMW 801 C-1 engine, rated at 1,560 PS (1,539 hp, 1,147 kW). Armament consisted of two fuselage-mounted 7.92 mm (.312 in) MG 17s, two wingroot-mounted 7.92 mm (.312 in) MG 17s and two outboard wing-mounted 20 mm MG FF/Ms.[24] The new longer propeller spinner and the cowling bulges, which became asymmetrical "teardrops" in shape, remained the same for the rest of the A-series. The panel immediately behind the exhaust outlets was unslotted, although some A-1s were retro-fitted with cooling slots. A new hood jettisoning system, operated by an MG FF cartridge, was introduced. The pilot's head armour changed in shape and was supported by two thin metal struts in a "V" shape attached to the canopy sides.[24] The standard radio fitted was the FuG 7, although some A-1s were also equipped with FuG 25 "Erstling" IFF equipment.[24] There were 102 Fw 190 A-1s built between June and late October 1941. The A-1 models still suffered from the overheating that prototype Fw 190s had suffered from during testing. After only 30–40 hours of use (sometimes less), many of these early engines had to be replaced.[25] 102 A-1s were built by Focke-Wulf at the Bremen and Marienburg factories between June and October 1941. Also in October a further order of 315 A-1s, sub-contracted to AGO Flugzeugwerke at its Oschersleben factory, began to be built as A-2s.[24]

The first of the A-2s appeared in October 1941 and were equipped with the improved BMW 801 C-2 which was still rated at 1,560 PS (1,539 hp, 1,147 kW).[26] The addition of new ventilation slots on the side of the fuselage further aided cooling. The new re-routed exhaust system devised by Oblt. Schrödeter of II./JG 26 finally resolved most of the overheating problems. There were thirteen exhausts for the fourteen cylinders; eight of these were grouped to exit, four on each side, along the forward fuselage, just above the leading edge of the wing; under the forward centre-section, between the undercarriage bays were another four exhaust stacks, with cylinders 9 and 10 sharing a common pipe.[27] The A-2 wing weaponry was updated, with the two wingroot-mounted 7.92 mm (.312 in) MG 17s being replaced by 20 mm MG 151/20E cannons.[26] With the introduction of the new cannons, the Revi C12/C gun sight was upgraded to the new C12/D model. The introduction of the A-2 marked a shift in air supremacy from the British, with their Spitfire Mk. V, to the Germans.[26][N 1] German production records make no real distinction between A-2s and A-3s, which were very similar aircraft: the total combined A-2 and A-3 production was 910 airframes built between October 1941 and August 1942 .[28] Apart from Focke-Wulf and AGO a new sub-contracter, Arado, built A-2s and A-3s at Warnemünde.[26]

The A-3 model was equipped with the BMW 801 D-2 engine, which increased power to up to 1,700 PS (1,677 hp, 1,250 kW) at take-off by improving the supercharger and raising the compression ratio. Because of these changes, the A-3 model required a higher-octane fuel—100 (C3) versus 87 (B4).[27] The A-3 retained the same weaponry as the A-2.[29] The A-3 also introduced the Umrüst-Bausätze factory conversion sets. The Fw190A-3/U1 and U2 were single experimental Fw 190s: U1 (W.Nr130270) was the first 190 to have the engine mount extended by 15 cm (6 in). The U2 (W.Nr 130386) was an aircraft which had RZ 65 73 mm (2.87 in) rocket launcher racks under the wings with three rockets per wing. There were also a small number of U7 aircraft tested as high-altitude fighters armed with only two 20 mm MG 151 cannons, but with reduced overall weight.[30]

The Fw 190A-3/U3 was the first of the Jabo (Jagdbomber), using an ETC-501 centre-line bomb rack able to carry up to 500 kg (1,100 lb) of bombs or, with horizontal stabilising bars, one 300 L (80 US gal) drop tank. The U3 retained the fuselage-mounted 7.92 mm (.312 in) MG 17s and the wing-mounted 20 mm MG 151 cannons, with the outer MG FF being removed.[30] [N 2]

The Fw190A-3/U4 was a reconnaissance version with two RB 12.5 cameras in the rear fuselage and a EK 16 gun camera or a Robot II miniature camera in the leading edge of the port wingroot. Armament was similar to the U3, however and the ETC 501 was usually fitted with a 300 L (80 US gal) drop tank.[30] See A-2 for production numbers.[31]

In Autumn 1942, a political decision diverted 72 new aircraft off the production lines for delivery to Turkey in an effort to keep this country friendly with the Axis powers. These were designated Fw 190 A-3a (a=ausländisch (foreign), designation for export models) and these were delivered between October 1942 and March 1943. The Turkish aircraft had the same armament as the A-1: four 7.92 mm (.312 in) MG 17 machine guns and two 20 mm MG FF cannon. There was no FuG 25 IFF device in the radio equipment.[30]

In later years, the high altitude performance of the Fw 190A was found to be inadequate. As a result GM-1 Nitrous oxide boost was introduced to provide more power at altitude.[32]

A-4 to A-6

Arming the underwing WGr 21 rocket-propelled mortar. The weapon was developed from the 21 cm Nebelwerfer 42 infantry weapon.

Introduced in July 1942, the A-4 was equipped with the same engine and basic armament as the A-3. Updated radio gear, the FuG 16Z, was installed replacing the earlier FuG VIIa. A new vertical aerial mount was fitted to the top of the tailfin, a configuration which was kept through the rest of the production Fw 190s. In some instances pilot-controllable engine cooling vents were fitted to the fuselage sides in place of the plain slots. Some A-4s were outfitted with underwing WGr 21 rocket mortars and were designated Fw 190 A-4/R6. However the A-4's main improvement was the number of Umrüst-Bausätze versions.

The U1 was outfitted with an ETC 501 rack under the fuselage all armament with the exception of the MG 151 cannons was removed. The U3 was very similar to the U1 and later served as the Fw 190 F-1 assault fighter. Some U3s used for night operations had a landing light, mounted in the leading edge of the left wingroot. The U4 was a reconnaissance fighter, with two RB 12.4 cameras in the rear fuselage and a EK 16 or Robot II gun camera. The U4 was equipped with fuselage-mounted 7.92 mm (.312 in) MG 17s and 20 mm MG 151 cannons. The U7 was a high-altitude fighter, easily identified by the compressor air-intakes on either side of the cowling. Adolf Galland himself flew a U7 in the spring of 1943.

The A-4/U8 was the Jabo-Rei (Jagdbomber Reichweite, long-rang fighter-bomber), adding a 300 L (80 US gal) drop tank under each wing, on VTr-Ju 87 racks with duralumin fairings produced by Weserflug, and a centre-line bomb rack. The outer-wing-mounted 20 mm MG FF/M cannons and the cowling-mounted 7.92 mm (.312 in) MG 17 were removed to save weight. The A-4/U8 served as the model for the Fw 190 G-1.

A new series of easier to install Rüstsatz field kits began to be produced in 1943. The first of these, the A-4/R1 was fitted with a FuG 16ZY radio set with a Morane whip-aerial fitted under the port wing. These aircraft were called Leitjäger or Fighter Formation Leaders that could be tracked and directed from the ground via special R/T equipment called Y-Verfahren. More frequent use of this equipment was made from the A-5 onwards.[33] The Fw 190A-4 could achieve 1,700hp (2,100 with MW-50 boost). Its maximum speed was 416 mph (670 k/ph) at 20,590 feet (6,250 m). Operational ceiling was 37,400 feet (11,400 m). Normal range was 497 miles (800 km). Normal take off weight was 8,378 lb (3,800 kg).[34] The D series improved on the Fw 190 series; with MW-50 injection it could achieve 2,240 hp and a top speed of 426 mph (680k/ph) at 21,326 feet. At 33,000 feet, the D-9 could rech 397 mph.[19] A total of 976 A-4s were built between June 1942 and March 1943.[35]

The A-5 was developed after it was determined that the Fw 190 could easily carry more ordnance. The engine was moved forward by 15 cm (6 in), and the aircraft was equipped with the BMW 801 D-2 engine, rated at 1,700 PS (1,677 hp, 1,250 kW). Some A-5s were tested with the MW 50 installation: this was a mix of 50% methyl alcohol and 50% water which could be injected into the engine to produce a short-term power boost to 2,000 PS (1,973 hp, 1,471 kW), but this system was not adopted for serial production. New radio gear, including FuG 25a Erstling IFF and an electric artificial horizon found their way into the A-5.[33] The A-5 retained the same basic armament as the A-4. The A-5 too, saw several Umrüst-Bausätze kits. The U2 was designed as a night Jabo-Rei and featured anti-reflective fittings and exhaust flame dampeners. A centre-line ETC 501 rack typically held a 250 kg (550 lb) bomb, and wing-mounted racks mounted 300 L drop tanks. A EK16 gun camera, as well as landing lights, were fitted to the wing leading edge. The U2 was armed with only two 20 mm MG 151 cannons. The U3 was a Jabo fighter fitted with ETC 501s for drop-tanks and bombs; it too featured only two MG 151s for armament. The U4 was a "recon" fighter with two RB 12.5 cameras and all armament of the base A-5 with the exception of the MG FF cannons. The A-5/U8 was another Jabo-Rei outfitted with SC-250 centre-line mounted bombs, underwing 300-litre drop tanks and only two MG 151s; it later became the Fw 190 G-2. A special U12 was created to fight American and British bombers, outfitted with the standard 7.92 mm (.312 in) MG 17 and 20 mm MG 151 but replacing the outer-wing 20 mm MG-FF cannons by two underwing gun pods containing two 20 mm MG 151/20 each, for a total of two machine guns and six cannons. The A-5/U12 was the prototype installation of what was known as the R1 package from the A-6 onwards. The A-5/R11 was a night-fighter conversion fitted with FuG 217 Neptun (Neptune) radar equipment with arrays of three dipole antenna elements vertically mounted fore and aft of the cockpit and above and below the wings. Flame dampening boxes were fitted over the exhaust exits. There were 1,752 A-5s built from November 1942 to June 1943.[36]

The Fw 190 A-6 was developed to fix the shortcomings found in previous "A" models when fighting U.S. heavy bombers. Modifications of the type to date had caused the weight of the aircraft to creep up. To combat this and to allow better weapons to be installed in the wings, a structurally redesigned and lighter wing was introduced with the A-6. The normal armament was increased to two MG 17 fuselage machine guns and four 20 mm MG 151/20E wing-root and outer wing cannon with larger ammunition boxes. New electrical sockets and reinforced weapon-mounts were fitted internally in the wings to allow the installation of either 20 mm or 30 mm (1.18 in) ammunition boxes and for under-wing armament. Because the outer wing MG 151s were mounted lower than the MG/FFs new larger hatches, incorporating bulges and cartridge discharge chutes, were incorporated into the wing lower surfaces. It is believed the MG 17s were kept because their tracer rounds served as a targeting aid for the pilots. A new FuG 16 ZE radio navigation system was fitted in conjunction with a FuG 10 ZY. A loop aerial for radio-navigation, mounted on a small "teardrop" base was fitted under the rear fuselage, offset slightly to port, with an additional short "whip" aerial aft of this. These aerials were fitted on all later Fw 190 variants. In late 1943, the Erla Antwerp factory designed a new, much more simple rack/drop tank fitting, which was much more streamlined than the bulky ETC 501 and could be quickly fitted or removed prior to take-off. Several A-6s, A-7s and A-8s of JG 26 were fitted with these racks (one aircraft so fitted was A-8 W.Nr.170346 Black 13 flown by Obstlt. Josef Priller during the Normandy invasion on 6 June 1944.) The A-6 was outfitted in numerous ways with various sets, Rüstsätze (field modification kits): more flexible than the factory upgrade kits for previous versions, these field upgrade kits allowed the A-6 to be refitted in the field as missions demanded. At least 963 A-6s were built between July 1943 ending in April 1944 according to RLM acceptance reports and Focke-Wulf production books.

A-7 to A-8

An Fw 190 A-8/R2 in American hands. "White 11" of 5./JG 4 was captured during Operation Bodenplatte after its engine had been damaged by American light flak.

The Fw 190 A-7 was based on the Fw 190 A-5/U9 prototype, and entered production in November 1943. The A-7 was equipped with the BMW 801 D-2 engine, again producing 1,700 PS (1,677 hp, 1,250 kW). Designed to combat the USAAF's heavy bombers the basic armament was upgraded to include two fuselage-mounted 13 mm (.51 in) MG 131s, replacing the MG 17s. Because the bulkier MG 131s had to be mounted further apart the upper gun cowling, just in front of the cockpit, was modified with faired bulges and a new upper engine cowling, with the gun blast troughs further apart, was manufactured. This left insufficient room for the three cowling toggle-latches which were moved to the cowling side panels. The rest of the armament fit stayed at two wingroot-mounted 20 mm MG 151s and two outer wing-mounted 20 mm MG 151s. The Revi gun sight was updated to the new 16B model. The additional weight of the new weapon systems required the updating of the wheels, adding a reinforced rim to better deal with typical combat airfield conditions. The A-7 was usually outfitted with the centre-line mounted ETC 501 rack. There were several major Rüstsätze for the A-7 many including Werfer-Granate WGr 21 rockets. A total of 701 A-7s were produced from November 1943 to April 1944 according to RLM acceptance reports and Focke-Wulf production books.[37]

The Fw 190 A-8 entered production in February 1944, it was either powered by the standard BMW 801 D-2 or the 801Q (also known as 801TU). The 801Q/TU was a standard 801D with improved, thicker armour on the front annular cowling, which also incorporated the oil tank, upgraded from 6 mm (.24 in) on earlier models to 10 mm (.39 in). Changes introduced with the Fw 190 A-8 also included the C3-injection Erhöhte Notleistung emergency boost system to the fighter variant of the Fw 190 A (a similar system with less power had been fitted to some earlier Jabo variants of the 190 A) raising power to 1,980 PS (1,953 hp, 1,456 kW) for a short time. The Erhöhte Notleistung system operated by spraying additional fuel into the fuel/air mix, cooling it and allowing higher boost pressures to be run, but at the cost of much higher fuel consumption. From the A-8 on Fw 190s could be fitted with a new paddle-bladed wooden propeller, easily identified by its wide blades with curved tips. A new bubble canopy design, with greatly improved vision sideways and forward had been developed for the F-2 ground attack model, but was often seen fitted at random on A-8s, F-8s and G-8s. The new canopy included a larger piece of head armour which was supported by reinforced bracing and a large fairing. A new internal fuel tank with a capacity of 115 L (30 US gal) was fitted behind the cockpit, which meant that the radio equipment had to be moved forward to just behind the pilot. Externally, a large round hatch was incorporated into the lower fuselage to enable the new tank to be installed and the pilot's oxygen bottles were moved aft and positioned around this hatch. A fuel filler was added to the port side, below the rear canopy and a rectangular radio access hatch was added to starboard. Other changes included an ETC 501 under-fuselage rack which was mounted on a lengthened carrier and moved 200 mm (8 in) further forward to help restore the centre of gravity of the aircraft. This fuselage would form the basis for all later variants of the Fw 190 and the Ta 152 series. The Morane "whip" aerial for Y-Verfahren was fitted as standard under the port wing, just aft of the wheel-well. Nearly a dozen Rüstsätze kits were made available for the A-8, including the famous A-8/R2 and A-8/R8 Sturmbockmodels. The A-8/R2 replaced the outer wing 20 mm cannon with a 30 mm (1.18 in) MK 108 cannon, the A-8/R8 was similar but fitted with heavy armour including 30 mm (1.18 in) canopy and windscreen armour and 5 mm ( in) cockpit armour. The A-8 was the most numerous of the Fw 190 As, with over 6,550 A-8 airframes produced from March 1944 to May 1945. A-8s were produced by at least eight factories during its lifetime.[38]

A-9

The Fw 190 A-9 was the last A-model produced, and was first built in September 1944. The A-9 was fitted with the new BMW 801S, called the 801 TS or 801 TH when shipped as a Kraftei, or "power-egg", engine (an aircraft engine installation format embraced by the Luftwaffe for a number of engine types on operational aircraft, in part for easy field replacement) rated at 2,000 PS (1,973 hp, 1,471 kW); the more powerful 2,400 PS (2,367 hp, 1,765 kW) BMW 801F-1 was not available. The armour on the front annular cowling, which also incorporated the oil tank, was upgraded from the 6 mm (.24 in) on earlier models to 10 mm (.39 in). The 12-blade cooling fan was initially changed to a 14-blade fan, but it consumed more power to operate and did not really improve cooling; thus BMW reverted back to the 12-blade fan. The cowling of the A-9 was also slightly longer than that of the previous Anton's due to the use of a larger, more efficient annular radiator for the oil system. The bubble canopy design with the larger head armour was fitted as standard. Three types of propeller were authorised for use on the A-9: the VDM 9-112176A wooden propeller, 3.5 m (11 ft 6 in) in diameter, was the preferred option however many A-9s were fitted with the standard VDM 9-12067A metal propeller and some had a VDM 9-12153A metal propeller with external, bolt on balance weights.[39] The A-9 was also designed originally as an assault aircraft, so the wing leading edges were to have been armoured; however this did not make it past the design stage in order to save weight. The A-9 was very similar to the A-8 in regards to the armament and Rüstsätze kits. A total of 910 A-9s were built between April 1944 and May 1945, mostly in Focke Wulf's Cottbus factory.[40]

In total about 13,291 Fw 190 As were produced in all variants.[41] However it is important to note that this number may include rebuilt or modified airframes from earlier aircraft. The Luftwaffe frequently changed between models on the production line. It was not uncommon to see a A5 be converted into an A7 or A8 aircraft. This is especially true of battle damaged aircraft that were repaired and upgraded to the latest version the factory was currently manufacturing.

High-altitude developments

Limitations of A series

This Fw 190 D-9 appears to be a late production aircraft built by Fieseler at Kassel. It has a late style canopy; the horizontal white outlined, black stripe shows this was a III.Gruppe aircraft. USAAF P-47s are in the background.

Even before the Fw 190 A was introduced into service it was obvious that the high-altitude performance of the aircraft left much to be desired. The BMW 139 (and the 801 that followed) had originally been designed as a high-power replacement for engines like the BMW 132 that were used primarily on low-altitude cargo aircraft and bombers, so the designers had not invested much effort in producing high-performance superchargers for it. In contrast, the Daimler-Benz DB 601 engines used on the Bf 109 featured an advanced fluid coupled, single stage, single speed supercharger that provided excellent boost across a wide range of altitudes. As a result, the 190 could not compete with the 109 at altitudes above 20,000 ft (6,100 m), which is one of the reasons the 109 remained in production until the end of the war.

An attempt was made with the Fw 190 A-10, which was to have begun arriving in pilots' hands by March 1945 and was to be fitted with larger wings for better maneuverability at higher altitudes which, due to internal space, could have allowed additional 30 mm (1.18 in) MK 103 cannons to be fitted. The A-10 was to be powered by the 801 F engine. However, due to the priority given to the Dora variant of the Fw 190 and the new Ta 152, the A-10 never made it past the prototype stage.[42]

High altitude improvements

Tank started looking at ways to address this problem early in the program. In 1941 he proposed a number of versions featuring new powerplants, and to best the performance of even the 109, he suggested using turbochargers in place of superchargers. Three such installations were outlined; the Fw 190 B with a turbocharged BMW 801, the Fw 190 C with a turbocharged Daimler-Benz DB 603, and the Fw 190 D with a supercharged Junkers Jumo 213. The aircraft would also include pressurized cockpit and other features making them more suitable for high-altitude work. Prototypes for all three models were ordered.[43]

Fw 190 V12 (an A-0, W.Nr. 00035) would be outfitted with many of the elements which eventually led to the B series. As it was based on the same BMW 801 engine as the A models, airframe modifications were relatively minor. These included a pressurized cockpit, which doubled the panes of glass in the canopy so that hot air could be forced between them to prevent icing, and the addition of the GM 1 nitrous oxide injection system. Several problems were encountered during the machine's flight and ground trials, mostly caused by the pressurization system for the cockpit, and for this reason, the first B-series testbed airframe was retired from active service in late 1942. However, trials on other aircraft continued in early 1943, when the first few Fw 190 A-1s (W.Nr. 0046 through 0049, and later 0055) were modified into testbeds. The same aircraft used for testing the pressurized cockpits were also used to test larger wings (20.3 m²/218.5 ft² versus the standard 18.3 m²/196.98 ft² wing), which seriously affected the studies on pressurized cockpits. Following these studies, one additional Fw 190 B was built, named the B-1, with W.Nr. 811. This aircraft was similar to the B-0s but had slightly different armament. In the B-1's initial layout, it was to be fitted with four 7.92 mm (.312 in) MG 17s and two 20 mm MG-FFs. However, W.Nr. 811 was fitted with two MG 17s, two 20 mm MG 151s and two 20 mm MG-FFs. After the completion of W.Nr. 811, no further Fw 190 B models were ordered, leading to the assumption that the testing was unsatisfactory.

The C model's use of the longer DB 603 required more extensive changes to the airframe. As the weight was distributed further forward, the tail of the aircraft had to be lengthened in order to move the centre of gravity back into a proper location relative to the wing. To experiment with these changes, several examples of otherwise standard 190 As were re-engined with a supercharged DB 603 to experiment with this engine fit, V13 (W.Nr. 0036) with the 1,750 PS 603A, the similar V15 and V16, a 1,800 PS 603 E being fitted to the latter after a time. With this engine the V16 was able to reach 725 km/h (450 mph) at 6,800 m (22,310 ft), a considerable improvement over the 650 km/h (400 mph) at 5,200 m (17,060 ft) of the basic A models. V18 followed, the first to feature the full high-altitude suite of features including the pressurized cockpit, longer wings, a 603G engine driving a new four-blade propeller, and a Hirth 9-2281 turbocharger. Unlike the experimental B models, V18 had a cleaner turbocharger installation, running the required piping along the wing root, partially buried in the fillet, and installing both the turbocharger air intake and intercooler in a substantially-sized teardrop-shaped fairing under the cockpit.[44] The "pouch" led to the "Känguruh" (Kangaroo) nickname for these models. V18 was later modified to the V18/U1, with a "downgraded" 603A engine but a new DVL turbocharger that improved power to 1,600 PS at an altitude of 10,700 m (35,105 ft). Four additional prototypes based on the V18/U1 followed: V29, V30, V32 and V33.

Like the C models, the early examples of the D models were built primarily to test fit the Jumo 213 engine to the existing airframe, as the D-0, with plans to move on to definitive high-altitude models later, the D-1 and D-2. The first D-0 prototype was completed in October 1942, consisting of an A-5 airframe with the Jumo 213A engine. Further examples followed, but like the C models the development was stretched out.

By late 1943, the US 8th Air Force was evidently gearing up for major operations to follow. At the altitudes the B-17 Flying Fortress operated at, generally around 25,000 ft (7,600 m), the 190 As were struggling, while the 109 was simply too lightly armed to be very useful against these aircraft. The B had been abandoned by this point, leaving the C and D as potential solutions, but problems with getting the turbocharger to work reliably continued. Improvements using the mechanically supercharged versions of the engines were more than enough to field a competitive design at altitudes around 25,000 ft (7,600 m). The RLM became interested in advancing these simpler designs into production as a stop-gap measure. Since the DB 603 was in high demand for various twin-engine designs like the Messerschmitt Me 410, the RLM selected the Jumo 213 for future production, and the D model became the next Fw 190. It was decided to continue development of the high-altitude Fw 190s as the Ra-2 and Ra-3. After renaming, The Ra-3 would become the Focke-Wulf Ta 152.

Fw 190D

Fw 190D-9

A side view of the NMUSAF's D-9. One can easily distinguish the D-9 model from earlier variants by the extended nose and tail sections.

The Fw 190 D (nicknamed the Dora; or Long-Nose Dora, "Langnasen-Dora") was intended to improve on the high-altitude performance of the A-series enough to make it useful against the American heavy bombers of the era. In reality, the D series was rarely used against the heavy bomber raids, as the circumstances of the war in late 1944 meant that fighter-versus-fighter combat and ground attack missions took priority. A total of 1,805 D-9s were produced.[45] Production started in August 1944[45] with the variant entering Luftwaffe service in September 1944 with III./JG 54.

The liquid-cooled 1,750 PS (1,726 hp, 1,287 kW) Jumo 213A could produce 2,100 PS (2,071 hp, 1,545 kW) of emergency power with MW 50 injection, improving performance to 426 mph (686 km/h) at 21,650 ft (6,600 m). Early D-9s reached service without the MW 50 installation, but in the meantime Junkers produced a kit to increase manifold pressure (Ladedrucksteigerungs-Rüstsatz) that increased engine output by 150 PS to 1,900 PS, and was effective up to 5,000 m (16,400 ft) altitude. It was fitted immediately to D-9s delivered to the units from September, or retrofitted in the field by TAM. By the end of December, all operational Doras, 183 in total, were converted.[46] From November 1944, a simplified methanol-water (MW 50) system (Oldenburg) was fitted, which boosted output to 2,100 PS. By the end of 1944, 60 were delivered with the simplified MW 50 system or were at the point of entering service. The 115 L tank of the Oldenburg system would hold the MW 50 booster liquid, which was single-purpose, while later systems were to be dual-purpose, holding either MW 50 or additional fuel.[47]

The fighter lacked the high turn rate and higher rate of roll of its close-coupled radial-engined predecessor. It was a bit faster, however, with a maximum speed of 680 km/h (422 mph) at 6,600 meters (21,650 ft). Its 2,240 horsepower with methanol-water injection (MW 50) gave it an excellent acceleration in combat situations. It also climbed and dived more rapidly than the Fw 190A, and so proved well suited to the dive-and-zoom ambush tactics favored by the Schlageter pilots. Many of the early models were not equipped with tanks for methanol, which was in very short supply in any event. At low altitude, the top speed and acceleration of these examples were inferior to those of Allied fighters. Hans Hartigs recalled that only one of the first batch of Dora-9s received by the First Gruppe had methanol-water injection, and the rest had a top speed of only 590 km/h (360 mph).[48]

Due to the failure of multiple attempts to create an effective next-generation 190, as well as the comments of some Luftwaffe pilots, expectations of the Dora project were low. These impressions were not helped by the fact that Tank made it very clear that he intended the D-9 to be a stopgap until the Ta 152 arrived. These negative opinions existed for some time until positive pilot feedback began arriving at Focke-Wulf and the Luftwaffe command structure.[49] Sporting excellent handling and performance characteristics, it became very clear that the D-9 was nearly the perfect response to the Luftwaffe's need for an effective medium altitude, high-speed interceptor, although its performance still fell away at altitudes above about 20,000 ft (6,100 m). When flown by capable pilots, the Fw 190D proved to the equal of Allied types.[50][51]

In order to fit the new engine in the Fw 190 fuselage while maintaining proper balance and weight distribution, both the nose and the tail of the aircraft were lengthened, adding nearly 1.52 m (4.99 ft) to the fuselage, bringing the overall length to 10.192 m (33.438 ft) versus the 9.10 m (29.9 ft) of the late war A-9 series. The lengthened tail required that an extra, straight sided bay, 30 cm (12 in) long, was spliced in forward of the rear angled joint and tail assembly of the fuselage. To further aid balance the pilot's oxygen bottles were moved aft and located in the new bay. This gave the rear fuselage a "stretched" appearance.[52]

Furthermore, the move to a V12 engine from a radial engine required more components to be factored into the design, most significantly the need for coolant radiators (radial engines are air-cooled). To keep the design as simple and as aerodynamic as possible, Tank used an annular radiator (the AJA 180 L) installed at the front of the engine, similar to the configuration used in the Jumo powered versions of the Junkers Ju 88. The annular radiator with its adjustable cooling gills resembled a radial engine installation, although the row of six short exhausts stacks on either side of the elongated engine cowling showed that Jumo 213 was an inverted vee-12 engine.[53] While the first few Doras were fitted with the flat-top canopy, these were later replaced with the newer rounded top "blown" canopy first used on the A-8 model. With the canopy changes, the shoulder and head armour plating design was also changed. Some late model Doras were also fitted with the Ta 152 vertical stabilizer and rudder, often called "Big Tails" by the Luftwaffe ground crews and pilots, as seen on W.Nr. 500647 Brown 4 from 7./JG 26 and W.Nr. 500645 Black 6 from JG 2. The centre-line weapons rack was changed to an ETC 504 with a simplified and much smaller mounting and fairing.[52]

A Fw 190 D-9, W.Nr. 210, one of the first production aircraft at the Cottbus plant. Note the early canopy and redesigned, simplified centreline rack carrying a 300 l drop tank.[54]

As it was used in the anti-fighter role, armament in the "D" was generally lighter compared to that of the earlier aircraft—usually the outer wing cannon were dropped so that the armament consisted of two 13 mm (.51 in) MG 131 machine guns and two 20 mm MG 151/20 E wing root cannon, with all four weapons synchronized to fire through the propeller arc. While inferior to the A-series in roll rate, the "D" was superior in turn rate, climb, dive and horizontal speed. The Dora still featured the same wing as the A-8, however, and was capable of carrying outer wing cannons as well, as demonstrated by the D-11 variant, with a three-stage supercharger and four wing cannon (two MG 151s and two MK 108s).[55] The first Fw 190 D-9s started entering service in September 1944 with III./JG 54. It was quickly followed by other units including I./JG 26 which flew its last operations on the A-8s on 19 November 1944.[56]

Some Fw 190 Ds served as fighter cover for Me 262 airfields as the jet fighters were very vulnerable on takeoff and landing. These special units were known as Platzsicherungstaffel (airfield defence squadrons).[57] One unit, known as the Würger-Staffel (also nicknamed "Papageien Staffel"), was created in April 1944 by Leutnant Heinz Sachsenberg at the behest of Adolf Galland, and was part of JV 44. The role of the Staffel was to guard the airfield and JV 44's Messerschmitt Me 262s as they landed; as such the Fw 190s were supposed to take off before the jets and circle the airfield in pairs (a Rotte). However, to allow the 262s a clear run back to the airfield the 190s had to land before the jets, negating their protection.[58] To help anti-aircraft artillery protecting the airfields quickly identify friendly aircraft the undersurfaces of the Würger-Staffel 190s were painted red with narrow white stripes.[59]

Fw 190 D-11

17 Fw 190 D-11s were known to have been manufactured. This version was fitted with the uprated Jumo 213E series engine which was also used in the Ta-152 H series. Changes over the D-9 were the enlarged supercharger air intake on the starboard side cowling and the use of a wooden, broad-bladed VS 9 or 10 propeller unit utilizing three 9-27012 C-1 blades with a diameter of 3.6 m (11.8 ft). The 13 mm (.51 in) fuselage guns were removed, and the cowling redesigned by omitting the gun troughs and simplifying to a flat profile. Two 30 mm (1.18 in) MK 108 cannons were installed in the outer wings to complement the 20 mm MG 151s in the inboard positions. Of the 17 Dora-11s delivered, three can be accounted for. One, the best-known, was Rote 4 (red 4) of JV 44's Platzschutz unit. Another, white chevron, was found at München-Riem, and may have served with JV 44 after serving at the Verbandsführerschule General der Jagdflieger (Training School for Unit Leaders) at Bad Wörishofen; it is not known if it was actually used operationally. A third, "white <61," was also found after the war at the Verbandsfuehrerschule General der Jagdflieger.[60]

While the D-11 was under manufacture, work started on the Fw 190 D-12 and D-13 models. The D-12 and D-13s were based on the D-11 design, however the D-12 and D-13 were fitted with Motorkanone nose cannons firing through the propeller hub (the D-12 would be fitted with a 30 mm (1.18 in) MK 108 cannon and the D-13 would be fitted with a 20 mm MG 151/20 cannon). There were three test aircraft built for the D-12 line, V63, V64 and V65 but no production aircraft were built.

Fw 190 D-13

The Fw 190 D-13 started with the construction of two prototypes (W.Nr 732053 and W.Nr 7322054), and the 20 mm MG 151/20 cannon was found to be quite suited for the aircraft and was already well known to be effective against allied bombers, as well as an effective ground support weapon. Thus the Fw 190 D-13/R11 was selected to enter production. The D-13/R11 was fitted with all weather flying equipment including the PKS12 and K-23 systems for steering and autopilot. The FuG 125 radio system, known as Hermine was fitted to the aircraft, as well as a heated windscreen. Pilots reported that due to the large amounts of torque produced by the engine, they usually used the steering system during the take-off run as it helped with the rudder movements. The D-13 also introduced a hydraulic boost system for the ailerons, which was later used on the Ta 152.

In all, the RLM called for 820 D-11 airframes to be built by Focke-Wulf Sorau, stating in early 1945, Fieseler Kassel was tasked to build 1,420 D-12s starting in the same time frame and the manufacture of the D-13 was passed to Arbeitsgruppe Roland [N 3] tasked with the construction of 1,060 airframes starting again in early 1945. For some yet unknown reason, production of the D-12 was cancelled in favour of the D-13 model. From evidence from the Oberkommando der Luftwaffe General Quartiermeister document Nr. 2766/45 of April 1945, it was known that 17 D-13s were more than likely built, but only two were known to be in service. A D-13 (Wk. Nr 836017) flown by the Geschwaderkommodore of JG 26, Franz Götz, an ace with 63 kills, was surrendered to the British at Flensburg, Northern Germany in May 1945.[62] This aircraft is still in existence, painted in its original colour scheme as Yellow 10, is thought to be airworthy and is currently located in the Flying Heritage Collection at Paine Field in Everett, Washington. This aircraft is one of the few existing Fw 190s with a provenance that can be traced continuously from its manufacture to the present time.[63]

Ground attack variants

Although nearly all variants of the Fw 190 could carry bombs and other air-to-ground ordnance, there were two dedicated attack versions of the Fw 190. The Luftwaffe was looking for aircraft to replace the Henschel Hs 123 biplane, which was seriously outmatched in 1942, as well as the slow and heavy Junkers Ju 87.

Fw 190 F

The National Air & Space Museum's restored Fw 190 F-8 in late war markings

The Fw 190 F was originally manufactured as a Fw 190 A-0/U4. Early testing started in May 1942. The A-0 testbed aircraft was outfitted with centre-line and wing-mounted ETC 50 bomb racks. The early testing results were quite good, and Focke-Wulf began engineering the attack version of the Fw 190. New armor was added to the bottom of the fuselage, protecting the fuel tanks and pilot, the engine cowling, and the landing gear mechanisms and outer wing mounted armament. Finally, the Umrüst-Bausätze kit 3 was fitted to the aircraft by means of a ETC 501 or ER4 centre-line mounted bomb rack and up to a SC250 bomb under each wing. This aircraft was designated the Fw 190 F-1. The first 30 Fw 190 F-1s were renamed Fw 190 A-4/U3s; however, Focke-Wulf quickly began assembling the aircraft on the line as Fw 190 F-1s as their own model, with 18 more F-1s built before switching to the F-2. The Fw 190 F-2s were renamed Fw 190 A-5/U3s, which again were soon assembled as Fw 190 F-2s on the production line. There were 270 Fw 190 F-2s built according to Focke-Wulf production logs and RLM acceptance reports.

The Fw 190 F-3 was based on the Fw 190 A-5/U17, which was outfitted with a centre-line mounted ETC 501 bomb rack, and in the Fw 190 F-3/R1 and Fw 190 F-3/R-3, two double ETC 50 bomb racks under each wing or two similarly located 30 mm MK 103 cannons. The F-3 could carry a 66-Imp gal (300-liter) drop tank. A total of 432 Fw 190 F-3s were built.[64]

Due to difficulties creating an effective strafing Fw 190 F able to take out the Russian T-34 tank, the F-4 through F-7 models were abandoned, and all attempts focused on conversion of the Fw 190 A-8.

The Fw 190 F-8 differed from the A-8 model with a slightly modified injector on the compressor which allowed for increased performance at lower altitudes for several minutes. The F-8 was also outfitted with the improved FuG 16 ZS radio unit which provided much better communication with ground combat units. Armament on the Fw 190 F-8 was two 20 mm MG 151/20 cannon in the wing roots and two 13 mm (.51 in) MG 131 machine guns above the engine. According to RLM acceptance reports, at least 3,400 F-8s were built, and probably several hundred more were built in December 1944 and from February to May 1945. (Data for these months is missing and probably lost.) Dozens of F-8s served as various testbeds for anti-tank armament, including the WGr.28 280 mm air-to-ground missile, likely based on the projectiles from the Nbw 41 heavy ground barrage rocket system, and the 88 mm (3.46 in) Panzerschreck 2 rockets, Panzerblitz 1 and R4M rockets.

There were also several Umrüst-Bausätze kits developed for the F-8, which included the Fw 190 F-8/U1 long range JaBo, outfitted with underwing V.Mtt-Schloß shackles to hold two 300 L (80 US gal) fuel tanks. ETC 503 bomb racks were also fitted, allowing the Fw 190 F-8/U1 to carry one SC 250 bomb under each wing and one SC 250 bomb on the centre-line.

The Fw 190 F-8/U2 torpedo bomber was outfitted with an ETC 503 bomb rack under each wing and a centre-line mounted ETC 504. The U2 was also equipped with the TSA 2 A weapons sighting system that improved the U2's ability to attack seaborne target with a 1,543.lb (700-kg) BT 700.[64]

The Fw 190 F-8/U3 heavy torpedo bomber was outfitted with an ETC 502, which allowed it to carry one BT-1400 heavy torpedo (3,086-lb/1400 kg). Due to the size of the torpedo, the U3's tail gear needed to be lengthened. The U3 also was fitted with the 2,000 PS BMW 801S engine, and the tail from the Ta 152.

The Fw 190 F-8/U4, created as a night fighter, was equipped with flame dampers on the exhaust and various electrical systems such as the FuG 101 radio altimeter, the PKS 12 automatic pilot, and the TSA 2 A sighting system. Weapons fitted ranged from torpedoes to bombs; however, the U4 was outfitted only with two MG 151/20 cannon as fixed armament.

The Fw 190 F-9 was based on the Fw 190 A-9 but with the new Ta 152 tail unit, a new bulged canopy as fitted to late-build A-9s, and four ETC 50 or ETC 70 bomb racks under the wings. According to RLM acceptance reports, 147 F-9s were built in January 1945, and perhaps several hundred more from February to May 1945. (Data for these months is missing and probably lost.)

Fw 190 G

The Fw 190 G was built as a long-range attack aircraft (JaBo Rei, or Jagdbomber mit vergrösserter Reichweite). Following the success of the Fw 190 F as a Schlachtflugzeug (close support aircraft), both the Luftwaffe and Focke-Wulf began investigating ways of extending the range of the Fw 190 F. From these needs and tests, the Fw 190 G was born.

There were four distinct versions of the Fw 190 G:

The Fw 190 G-1: The first Fw 190 Gs were based on the Fw 190 A-4/U8 JaBo Rei's. Initial testing found that if all but two wing root mounted 20 mm MG 151 cannons (with reduced ammo load) were removed, the Fw 190 G-1 (as it was now called) could carry a 250 kg (550 lb) or 500 kg (1,100 lb) bomb on the centre-line and, via an ETC 250 rack, up to a 250 kg (550 lb) bomb under each wing. Typically the G-1s flew with underwing fuel tanks, fitted via the VTr-Ju 87 rack. The FuG 25a IFF (identification friend/foe) was fitted on occasion as well as one of the various radio direction finders available at the time. With the removal of the fuselage mounted MG 17s, an additional oil tank was added to support the BMW 801 D-2 engine's longer run times.

The Fw 190 G-2: The G-2 was based on the Fw 190 A-5/U8 aircraft. The G-2s were similarly equipped to the G-1s; however, due to wartime conditions, the underwing drop tank racks were replaced with the much simpler V.Mtt-Schloß fittings, to allow for a number of underwing configurations. Some G-2s were also fitted with the additional oil tank in place of the MG 17s; however, not all were outfitted with the oil tank. Some G-2s were fitted with exhaust dampers and landing lights in the left wing leading edge for night operations.

The Fw 190 G-3: The G-3 was based on Fw 190 A-6. Like the earlier G models, all but the two wing root mounted MG 151 cannons were removed. The new V.Fw. Trg bombracks, however, allowed the G-3 to simultaneously carry fuel tanks and bomb loads. Because of the range added by two additional fuel tanks, the G-3's duration increased to two hours, 30 minutes. Due to this extra flight duration, a PKS 11 autopilot was fitted. Some G-3s built in late 1943 were also fitted with the a modified 801 D-2 engine which allowed for increased low-altitude performance for short periods of time. The G-3 had two primary Rüstsätze kits. The R1 replaced the V.Fw. Trg racks with WB 151/20 cannon pods. This gave the G-3/R1 a total of six 20 mm cannons. When fitted with the R1 kit, the G model's addition armor was typically not used, and the PKS11 removed. The G-3/R1 was used in both ground strafing and anti-bomber roles. The R5 was similar to the R1, but the V.Fw. Trg racks were removed, and two ETC 50 racks per wing were added. As with the R1, the additional armor from the base G model were removed, as was the additional oil tank. In some instances, the fuselage mounted MG 17s were refitted.

The Fw 190 G-8: The G-8 was based on the Fw 190 A-8. The G-8 used the same "bubble" canopy as the F-8, and was fitted with underwing ETC 503 racks that could carry either bombs or drop tanks. Two primary Rüstsätze kits were also seen on the F-8. The R4 kit was a planned refit for the GM 1 engine boost system, but never made it into production, and the R5 kit replaced the ETC 503 racks with two ETC 50 or 71 racks. Due to the similarities with the F-8, the G-8 was only in production for a short amount of time. Some Gs were field modified to carry 1,000 kg (2,210 lb), 1,600 kg (3,530 lb) and 1,800 kg (3,970 b) bombs. When this was done, the landing gear was slightly improved by enhancing the oleo struts and using reinforced tires.

Approximately 1,300 Fw 190 Gs of all variants were new built. Due to war conditions, the manufacturing environment, and the use of special workshops during the later years of the war, the actual number of G models built is almost impossible to determine. During the later years of the war, "composite" aircraft were often assembled. For example, the wings from a fuselage-damaged aircraft and the fuselage from a wing-damaged aircraft might be reassembled into a new aircraft and listed as a Fw 190G with a new serial number. The Fw 190 G-1 currently displayed at the National Air and Space Museum is one of these "composite" aircraft, built from the fuselage of a Fw 190 A-7.[65] During 1943 and 1944, Brigadier General Gustav Lindquist flew the Fw 190G from Wright Field in Dayton Ohio. Having flown the Bf 109E and G, Linquist remarked it was a higher performer than the Bf 109. At 25,000 feet and below, he deemed the fighter to a formidable opponent if used in a fighter configuration (without racks used by fighter-bombers). Lindquist also noted the large cockpit and single-lever throttle feature. The Fw 190 had a hydraulic mechanical computer called the "brain box" which automated mixture, propeller pitch, boost and megneto timing for efficiency. Fw 190 pilots had a consistently lower work load than other pilots.[66]

Trainer versions

As the Luftwaffe phased out older aircraft such as the Ju 87, and replaced them with the Fw 190, many pilots required flight training to make the transition as quickly and smoothly as possible. Thus was born the Schulflugzeug (literally "school airplane") training version of the Fw 190. Several old Fw 190 A-5s, and later in 1944, A-8s, were converted by replacing the MW 50 tank with a second cockpit. The canopy was modified, replaced with a new three-section unit that opened to the side, similar to the Bf 109. The rear portion of the fuselage was closed off with sheet metal. Originally designated Fw 190 A8-U1, they were later given the Fw 190 S-5 and S-8 designation. There were an estimated 58 Fw 190 S-5 and S-8 models converted or built.[67]

Operational history and survivors

The Fw 190 participated on every major combat front where the Luftwaffe operated, and did so with success.

Production

A 0.40-km² (100-acre) Focke-Wulfe plant at Marienburg produced approximately half of all Fw 190s and was bombed by the Eighth Air Force on 9 October 1944.[68]

Operators

 France
 Germany
 Hungary
 Japan
 Spanish State
 Romania
 Turkey

Modern Fw 190

Starting in 1997 a small German company, Flug Werk GmbH,[71] began work on a new Fw 190 A-8. These planes are new builds from the ground up, using many original dies, plans, and other information from the war. Werk numbers continued from where the German war machine left off with the new Fw 190 A-8 labeled Fw 190 A-8/N (N for Nachbau: "replica"). Some of these new Fw 190s are known to be fitted with the original tail wheel units from the Second World War; a small cache of tail gear having been discovered. In November 2005, the first flights were completed. Ironically, since the BMW 801 engines are no longer available, a Chinese licensed Russian engine, the ASh-82FN 14-cylinder twin-row radial engine, which powered some of the Fw 190s opposition: the La-5 and La-7, powers the new Fw 190 A-8/N. Flugwerk was also instrumental in the restoration of perhaps the only Fw 190 A-9 in existence. The aircraft is currently being restored in England for the Seattle-based Flying Heritage Collection.

Work has also been recently started on a Fw 190 D-9, and will be powered by a modified Allison V-1710 V-12, the powerplant of the P-39 Airacobra, another foe of the Fw 190 often flown by Russian forces in World War II. Recently this aircraft, known as Black 12, arrived in Kissimmee, FL, and on 12 December 2007, had its first engine run.[72]

The Fw 190 A-8/N participated in the Finnish war movie Tali-Ihantala 1944, painted in the same markings as Oberst Erich Rudorffer's aircraft in 1944.[73] The movie was released in December 2007.[74]

The White 1 Foundation, primarily involved in the restoration to airworthiness of an original Fw 190 F (the White 1, last flown by Unteroffizier Heinz Orlowski in World War II) that served with the "Arctic Ocean Fighter Wing" of the Luftwaffe, JG 5 "Eismeer", also has a pair of vintage Junkers Jumo 213 engines in its collection, complete with original annular radiators, possibly as vintage Kraftei power-egg unitized engine installations, and apparently plans an Fw 190 D-9 reproduction aircraft project of its own based on one of the engines. During the aircraft's restoration Herr Orlowski visited the Kissimmee facility in 2005 and briefly sat in the cockpit of the same "White 1" aircraft he flew in World War II.

In Dijon France, another Flug Werk-built Fw 190 (F-AZZJ) is based with owner Christophe Jacquard. It was assigned the production number 990013, and first flew on 9 May 2009. It sea-landed and was severely damaged on 9 June 2010 near Hyères after an engine failure; pilot Marc Mathis escaped uninjured.[75]

Specifications (Fw 190 A-8)

Data from Fw 190 A8

General characteristics

Performance

Armament

Specifications (Fw 190 D-9)

General characteristics

Performance

Armament

See also

Related development

Comparable aircraft

References

Notes
  1. Experience proved that air-cooled radial engines were more resilient than liquid cooled in-line engines under combat conditions. A single bullet or peice of shrapnel in the radiator or coolant pipes of liquid-cooled engines was often enough to drain the system, eventually causing the engine to seize or catch fire On several occasions Fw 190s withstood an entire cylinder(s) being shot away.[7]
  2. All Fw 190s which carried the centre-line racks had their inner wheel-bay doors removed and replaced by fixed fairings which were, in effect, a cut-away door. These fixed fairings incorporated a raised deflector to prevent hot exhaust gases from the lower exhausts spilling over onto the tyres. When these fairings were used an additional small plate was fixed to the lower lip of the undercarriage leg fairings.[29]
  3. Roland was an aircraft manufacturer known for its World War I aircraft.[61]
Citations
  1. Andrews and Morgan 1987, p. 225.
  2. Delve 2007, p. 80.
  3. Shacklady 2005, p. 25.
  4. 4.0 4.1 Green and Swanborough 2001, p. 13.
  5. Price 2009, p. 1.
  6. Price 2000, p. 6.
  7. 7.0 7.1 Price 2009, p. 3.
  8. Shacklady 2005, p. 30.
  9. Caygill 2002, p. 6.
  10. Janowicz 2001, p. 14.
  11. "Illustration of the fan on cutaway drawing." white1foundation.org. Retrieved: 14 August 2010.
  12. "Stammkennzeichen." afrikakorps.org. Retrieved: 23 August 2010.
  13. 13.0 13.1 13.2 13.3 13.4 13.5 Page 2002, p. 579.
  14. Spenser 1987, p. 56.
  15. Price 2009, p. 8.
  16. Price 2009, pp. 3-4.
  17. 17.0 17.1 Spenser 1987, p. 12.
  18. Stephenson, Robert and E. Brown Ryle III. "Fw 190 Undercarriage." HyperScale—An Online Magazine for Aircraft and Armour Modellers, 2003. Retrieved: 14 February 2008.
  19. 19.0 19.1 Caygill 2002, p. 14.
  20. 20.0 20.1 Smith and Kay 1972, p. 175.
  21. 21.0 21.1 Caldwell 1991, pp. 94-95.
  22. Caldwell 1991, p. 98.
  23. Caygill 2002, p. 12.
  24. 24.0 24.1 24.2 24.3 Page 2002, p. 581.
  25. Janowicz 2001, p. 25.
  26. 26.0 26.1 26.2 26.3 Page 2002, pp. 582-583.
  27. 27.0 27.1 Page 2002, p. 583.
  28. Janowicz 2001, pp. 25–27.
  29. 29.0 29.1 Page 2002, pp. 583-584.
  30. 30.0 30.1 30.2 30.3 Page 2002, p. 284.
  31. Janowicz 2001, pp. 27–32.
  32. Caygill 2002, pp. 13-14.
  33. 33.0 33.1 Page 2002, p. 587
  34. Munson 1983, p. 37.
  35. Janowicz 2001, pp. 32–34.
  36. Janowicz 2001, pp. 34–38.
  37. Janowicz 2001, pp. 40–41.
  38. Janowicz 2001, pp. 41–43.
  39. Page 2002, p. 593.
  40. Janowicz 2001, pp. 43–45.
  41. Janowicz 2001, pp. 66–67.
  42. Joineau and Breffort 2007, p. 25.
  43. "Focke-Wulf Fw 190D." csd.uwo.ca. Retrieved: 23 August 2010.
  44. "Fw 190 V18/U1." hobbyvista.com. Retrieved: 23 August 2010.
  45. 45.0 45.1 Rodeike. 1998, p. 381.
  46. Rodeike. 1998, pp. 379–380.
  47. Dietmar 2004, p.
  48. Caldwell 1998, pp. 388–399.
  49. Donald 1994, p. 80.
  50. Caldwell 2007, p.89.
  51. Caldwell 1998, p. 421.
  52. 52.0 52.1 Forsyth 1996, p. 197.
  53. Donald 1994, p. 76.
  54. "Fw 190 W.Nr. list." hobbyvista.com. Retrieved: 23 August 2010.
  55. Donald 1994, pp. 80, 84.
  56. Caldwell 1991, p. 292.
  57. Forsyth 1996, p. 194.
  58. Forsyth 1996, p. 207.
  59. Forsyth 1996, pp. 199-201, 275.
  60. Forsyth 1996, pp. 200, 204-205.
  61. "Roland D.II." WWI Aviation. Retrieved: 23 August 2010.
  62. "Focke Wulf Fw-190 D-13/R11 W.Nr. 836017." indianamilitary.org. Retrieved: 23 August 2010.
  63. "Yellow 10." btillman.com. Retrieved: 21 August 2009.
  64. 64.0 64.1 Mondey 2006, p. 72.
  65. "Fw 190F." NASM. Retrieved: 23 August 2010.
  66. National Air and Space Museum 1987, pp. 55-56.
  67. Janowicz 2001, pp. 55–56.
  68. Gurney 1962, p. 219.
  69. Bonhardt et al. 1992, p. 358.
  70. Caygill 2002, p. 34.
  71. "Flight GmbH—Focke-Wulf 190 (Translation)." flugwerk.de. Retrieved: 19 December 2007.
  72. "Black 12's first engine run." photobucket.com. Retrieved: 23 August 2010.
  73. "Fw 190 replica." Flug Werk. Retrieved: 23 August 2010.
  74. "Tali-Ihantala 1944." IMDB. Retrieved: 27 January 2008.
  75. Vives, Agnès. "Léon, le pilote multimiraculé (French)." leparisien.fr, 2 July 2010. Retrieved: 14 August 2010.
Bibliography
  • Andrews, C.F. and E.B. Morgan. Supermarine Aircraft since 1914. London: Putnam, Second Edition, 1987. ISBN 0-85177-800-3.
  • Bonhardt, Attila, Sárhidai Gyula and László Winkler. A Magyar Királyi Honvédség Fegyverzete. (The Royal Hungarian Army Weapons in Hungarian). Kecskemét, Hungary: Zrínyi Kiadó, 1992. ISBN 963-327-182-7.
  • Bowman, Martin W. P-51 Mustang vs Fw 190: Europe 1943-45. Oxford, UK: Osprey Publishing, 2007. ISBN 1-8460-3189-3.
  • A Butcher Bird's Tale: the Story of the Focke Wulf 190 (DVD). Retrieved: 3 April 2008.
  • Caldwell, Donald and Richard Muller. The Luftwaffe over Germany: Defense of the Reich. London: Greenhill Books, 2007. ISBN 978-1-85367-712-0.
  • Caldwell, Donald L. JG 26: Top Guns of the Luftwaffe. New York: Ivy Books, 1991. ISBN 0-8041-1050-6.
  • Caldwell, Donald L. The JG26 War Diary, Vol. 2: 1943–1945. London: Grub Street Publishing, 1998. ISBN 1-898697-86-8.
  • Crandall, Jerry. Yellow 10: The Story of the Ultra-rare Fw 190 D-13. Hamilton, MT: Eagle Edition Ltd., 2000. ISBN 0-9660706-3-1.
  • Donald, David, ed. Warplanes of the Luftwaffe. London: Aerospace Publishing, 1994. ISBN 1-874023-56-5.
  • Forsyth, Robert. JV 44 The Galland Circus. Burgess Hill, Sussex, UK: Classic Publications, 1996. ISBN 0-9526867-0-8.
  • Griehl, Manfred. Focke-Wulf Fw 190 Varianten: Flugzeug Profile 45. UNITEC Medienvertrieb E.K. 2008. ISBN13/ EAN: 9690000052959
  • Green, William and Gordon Swanborough. The Focke-Wulf 190: Fw 190. Newton Abbot, UK: David & Charles, 1976. ISBN 0-7153-7084-7.
  • Gurney, Gene (Major, USAF). The War in the Air: A Pictorial History of World War II Air Forces in Combat. New York: Bonanza Books, 1962.
  • Jackiewicz, Jacek and Bock, Robert. Captured Butcherbirds Vol. 1. Ajaks. 2009. ISBN13/ EAN: 9788392491422
  • Jackson, Robert. Aircraft of World War II: Development, Weaponry, Specifications. Edison, NJ: Chartwell Books, 2003. ISBN 0-7858-1696-8.
  • Janowicz, Krzysztof (with Neil Page). Focke-Wulf Fw 190, Vols 1 & II. London: Kagero Publications, 2001. ISBN 83-89088-11-8.
  • Jessen, Morten. Focke-Wulf 190: The Birth of the Butcher Bird 1939–1943. London: Greenhill Books, 1998. ISBN 1-85367-328-5.
  • Joineau, Andre and Dominique Breffort. P-51 Mustang: From 1943 to 1945. Paris: Histoire & Collections, 2007. ISBN 2-913903-81-9.
  • Kosin, Ruediger. The German Fighter Since 1915- translation of Die Entwicklung der deutschen Jagdflugzeuge. London: Putnam, 1988. ISBN 0-85177-822-4.
  • Lorant, Jean-Yves and Richard Goyat. JG 300 (two volumes translated by Neil Page). Hamilton, MT: Eagle Editions, 2006. Vol. 1: ISBN 0-9761034-0-0, Vol. 2: ISBN 0-9761034-2-7.
  • Lowe, Malcolm. Production Line to Front Line #5, Focke-Wulf Fw 190. London: Osprey, 2003. ISBN 1-84176-438-8.
  • Manrho, John and Ron Putz. Bodenplatte: The Luftwaffe's Last Hope—The Attack on Allied Airfields, New Year's Day 1945. Ottringham, UK: Hikoki Publications, 2004. ISBN 1-902109-40-6.
  • Mondey, David. The Hamlyn Concise Guide to Axis Aircraft of World War II. London: Bounty Books, 2006. ISBN 0-7537-1460-4.
  • Nowarra, Heinz J. The Focke-Wulf Fw 190 Fighters, Bombers, Ground Attack Aircraft. West Chester, PA: Schiffer Publications, 1991. ISBN 0-88740-354-9.
  • Page, Neil. "Focke Wulf 190: Part One-the Fw 190A-series fighter variants." Scale Aircraft Modelling, Vol. 24, No. 9, November 2002.
  • Page, Neil. "The Sturmgruppen—Bomber Destroyers 1944." Scale Aircraft Modelling, March 2001.
  • Price, Alfred. Focke Wulf Fw 190 in Combat. London: Sutton Publishing, 2000. ISBN 0-7509-2548-5.
  • Ramsay, Winston G., ed. The Blitz Then and Now: Volume 3, May 1941-May 1945. London: Battle of Britain Prints International Ltd, 1990. ISBN 0-900913-58-4.
  • Rodeike, Peter. Jagdflugzeug 190. Eutin, Germany: Struve-Druck, 1998. ISBN 3-923457-44-8.
  • Ryle, E. Brown and Malcolm Laing. Walk Around Number 22: Focke-Wulf Fw 190A/F. Carrollton, Texas: Squadron/Signal Publications, 1997. ISBN 0-89747-374-4.
  • Shacklady, Edward. Butcher Bird: Focke-Wulf Fw 190. Bristol, UK: Cerberus Publishing Ltd., 2005. ISBN 1-84145-103-7.
  • Smith, J. R and Anthony L. Kay. German Aircraft of the Second World War. London: Putnam & Company Ltd., 1972. ISBN 0-370-00024-2
  • Spencer, Jay P. Focke-Wulf Fw 190: Workhorse of the Luftwaffe. Washington, DC: Smithsonian, 1989. ISBN 0-87474-885-2.
  • Spick, Mike. Allied Fighter Aces of World War II. London, Greenhill Books. 1997. ISBN 1-85367-282-3.
  • Thompson, J. Steve with Peter C Smith. Air Combat Manoeuvres. Hersham, Surrey, UK: Ian Allan Publishing, 2008. ISBN 978-1-903223-98-7.
  • United States Air Force Museum Guidebook. Wright-Patterson AFB, Ohio: Air Force Museum Foundation, 1975.
  • Wagner, Ray and Heinz Nowarra. German Combat Planes: A Comprehensive Survey and History of the Development of German Military Aircraft from 1914 to 1945. New York: Doubleday, 1971.
  • Weal, John. Focke-Wulf Fw 190 Aces of the Russian Front. Oxford: Osprey, 1998. ISBN 1-85532-518-7.
  • Weal, John. Focke-Wulf Fw 190 Aces of the Western Front. Oxford: Osprey, 1996. ISBN 1-85532-595-1.
  • Winchester, Jim. "Focke-Wulf Fw 190." Aircraft of World War II. London: Grange Books, 2004. ISBN 1-84013-639-1.

External links